\(\int \frac {(a+i a \tan (c+d x)) (A+B \tan (c+d x))}{\tan ^{\frac {5}{2}}(c+d x)} \, dx\) [117]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 34, antiderivative size = 78 \[ \int \frac {(a+i a \tan (c+d x)) (A+B \tan (c+d x))}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \sqrt [4]{-1} a (A-i B) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )}{d}-\frac {2 a A}{3 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 a (i A+B)}{d \sqrt {\tan (c+d x)}} \]

[Out]

2*(-1)^(1/4)*a*(A-I*B)*arctan((-1)^(3/4)*tan(d*x+c)^(1/2))/d-2*a*(I*A+B)/d/tan(d*x+c)^(1/2)-2/3*a*A/d/tan(d*x+
c)^(3/2)

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {3672, 3610, 3614, 211} \[ \int \frac {(a+i a \tan (c+d x)) (A+B \tan (c+d x))}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \sqrt [4]{-1} a (A-i B) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )}{d}-\frac {2 a (B+i A)}{d \sqrt {\tan (c+d x)}}-\frac {2 a A}{3 d \tan ^{\frac {3}{2}}(c+d x)} \]

[In]

Int[((a + I*a*Tan[c + d*x])*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(5/2),x]

[Out]

(2*(-1)^(1/4)*a*(A - I*B)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]])/d - (2*a*A)/(3*d*Tan[c + d*x]^(3/2)) - (2*a*(
I*A + B))/(d*Sqrt[Tan[c + d*x]])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3610

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b
*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 + b^2))), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3614

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2*(c^2/f), S
ubst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]

Rule 3672

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*(A*b - a*B)*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2
+ b^2))), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[a*A*c + b*B*c + A*b*d - a*B*d - (A*b*
c - a*B*c - a*A*d - b*B*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && LtQ[m, -1] && NeQ[a^2 + b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 a A}{3 d \tan ^{\frac {3}{2}}(c+d x)}+\int \frac {a (i A+B)-a (A-i B) \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x)} \, dx \\ & = -\frac {2 a A}{3 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 a (i A+B)}{d \sqrt {\tan (c+d x)}}+\int \frac {-a (A-i B)-a (i A+B) \tan (c+d x)}{\sqrt {\tan (c+d x)}} \, dx \\ & = -\frac {2 a A}{3 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 a (i A+B)}{d \sqrt {\tan (c+d x)}}+\frac {\left (2 a^2 (A-i B)^2\right ) \text {Subst}\left (\int \frac {1}{-a (A-i B)+a (i A+B) x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d} \\ & = \frac {2 \sqrt [4]{-1} a (A-i B) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )}{d}-\frac {2 a A}{3 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 a (i A+B)}{d \sqrt {\tan (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.59 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.74 \[ \int \frac {(a+i a \tan (c+d x)) (A+B \tan (c+d x))}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=\frac {-2 a A-6 i a (A-i B) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},i \tan (c+d x)\right ) \tan (c+d x)}{3 d \tan ^{\frac {3}{2}}(c+d x)} \]

[In]

Integrate[((a + I*a*Tan[c + d*x])*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(5/2),x]

[Out]

(-2*a*A - (6*I)*a*(A - I*B)*Hypergeometric2F1[-1/2, 1, 1/2, I*Tan[c + d*x]]*Tan[c + d*x])/(3*d*Tan[c + d*x]^(3
/2))

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 219 vs. \(2 (64 ) = 128\).

Time = 0.03 (sec) , antiderivative size = 220, normalized size of antiderivative = 2.82

method result size
derivativedivides \(\frac {a \left (-\frac {2 A}{3 \tan \left (d x +c \right )^{\frac {3}{2}}}-\frac {2 \left (i A +B \right )}{\sqrt {\tan \left (d x +c \right )}}+\frac {\left (i B -A \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}+\frac {\left (-i A -B \right ) \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}\right )}{d}\) \(220\)
default \(\frac {a \left (-\frac {2 A}{3 \tan \left (d x +c \right )^{\frac {3}{2}}}-\frac {2 \left (i A +B \right )}{\sqrt {\tan \left (d x +c \right )}}+\frac {\left (i B -A \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}+\frac {\left (-i A -B \right ) \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}\right )}{d}\) \(220\)
parts \(\frac {\left (i a A +B a \right ) \left (-\frac {\sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}-\frac {2}{\sqrt {\tan \left (d x +c \right )}}\right )}{d}+\frac {a A \left (-\frac {2}{3 \tan \left (d x +c \right )^{\frac {3}{2}}}-\frac {\sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}\right )}{d}+\frac {i a B \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4 d}\) \(304\)

[In]

int((a+I*a*tan(d*x+c))*(A+B*tan(d*x+c))/tan(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/d*a*(-2/3*A/tan(d*x+c)^(3/2)-2*(I*A+B)/tan(d*x+c)^(1/2)+1/4*(-A+I*B)*2^(1/2)*(ln((1+2^(1/2)*tan(d*x+c)^(1/2)
+tan(d*x+c))/(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))+2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)
*tan(d*x+c)^(1/2)))+1/4*(-I*A-B)*2^(1/2)*(ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/
2)+tan(d*x+c)))+2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))))

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 427 vs. \(2 (62) = 124\).

Time = 0.28 (sec) , antiderivative size = 427, normalized size of antiderivative = 5.47 \[ \int \frac {(a+i a \tan (c+d x)) (A+B \tan (c+d x))}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {3 \, {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a^{2}}{d^{2}}} \log \left (\frac {2 \, {\left ({\left (A - i \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (i \, d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, d\right )} \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a^{2}}{d^{2}}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (i \, A + B\right )} a}\right ) - 3 \, {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a^{2}}{d^{2}}} \log \left (\frac {2 \, {\left ({\left (A - i \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (-i \, d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, d\right )} \sqrt {-\frac {{\left (i \, A^{2} + 2 \, A B - i \, B^{2}\right )} a^{2}}{d^{2}}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (i \, A + B\right )} a}\right ) - 4 \, {\left ({\left (4 \, A - 3 i \, B\right )} a e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, A a e^{\left (2 i \, d x + 2 i \, c\right )} - {\left (2 \, A - 3 i \, B\right )} a\right )} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{6 \, {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \]

[In]

integrate((a+I*a*tan(d*x+c))*(A+B*tan(d*x+c))/tan(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

-1/6*(3*(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^2/d^2)*log(2*((A
 - I*B)*a*e^(2*I*d*x + 2*I*c) + (I*d*e^(2*I*d*x + 2*I*c) + I*d)*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^2/d^2)*sqrt((-
I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-2*I*d*x - 2*I*c)/((I*A + B)*a)) - 3*(d*e^(4*I*d*x +
 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^2/d^2)*log(2*((A - I*B)*a*e^(2*I*d*x +
2*I*c) + (-I*d*e^(2*I*d*x + 2*I*c) - I*d)*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^2/d^2)*sqrt((-I*e^(2*I*d*x + 2*I*c)
+ I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-2*I*d*x - 2*I*c)/((I*A + B)*a)) - 4*((4*A - 3*I*B)*a*e^(4*I*d*x + 4*I*c)
+ 2*A*a*e^(2*I*d*x + 2*I*c) - (2*A - 3*I*B)*a)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))/(
d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)

Sympy [F]

\[ \int \frac {(a+i a \tan (c+d x)) (A+B \tan (c+d x))}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=i a \left (\int \frac {A}{\tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {B}{\sqrt {\tan {\left (c + d x \right )}}}\, dx + \int \left (- \frac {i A}{\tan ^{\frac {5}{2}}{\left (c + d x \right )}}\right )\, dx + \int \left (- \frac {i B}{\tan ^{\frac {3}{2}}{\left (c + d x \right )}}\right )\, dx\right ) \]

[In]

integrate((a+I*a*tan(d*x+c))*(A+B*tan(d*x+c))/tan(d*x+c)**(5/2),x)

[Out]

I*a*(Integral(A/tan(c + d*x)**(3/2), x) + Integral(B/sqrt(tan(c + d*x)), x) + Integral(-I*A/tan(c + d*x)**(5/2
), x) + Integral(-I*B/tan(c + d*x)**(3/2), x))

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 171 vs. \(2 (62) = 124\).

Time = 0.30 (sec) , antiderivative size = 171, normalized size of antiderivative = 2.19 \[ \int \frac {(a+i a \tan (c+d x)) (A+B \tan (c+d x))}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=\frac {3 \, {\left (2 \, \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + 2 \, \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + \sqrt {2} {\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) - \sqrt {2} {\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right )\right )} a + \frac {8 \, {\left (3 \, {\left (-i \, A - B\right )} a \tan \left (d x + c\right ) - A a\right )}}{\tan \left (d x + c\right )^{\frac {3}{2}}}}{12 \, d} \]

[In]

integrate((a+I*a*tan(d*x+c))*(A+B*tan(d*x+c))/tan(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

1/12*(3*(2*sqrt(2)*(-(I + 1)*A + (I - 1)*B)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(d*x + c)))) + 2*sqrt(2)*(
-(I + 1)*A + (I - 1)*B)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(tan(d*x + c)))) + sqrt(2)*((I - 1)*A + (I + 1)*B
)*log(sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) - sqrt(2)*((I - 1)*A + (I + 1)*B)*log(-sqrt(2)*sqrt(tan(d
*x + c)) + tan(d*x + c) + 1))*a + 8*(3*(-I*A - B)*a*tan(d*x + c) - A*a)/tan(d*x + c)^(3/2))/d

Giac [A] (verification not implemented)

none

Time = 0.72 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.88 \[ \int \frac {(a+i a \tan (c+d x)) (A+B \tan (c+d x))}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {\left (i - 1\right ) \, \sqrt {2} {\left (-i \, A a - B a\right )} \arctan \left (-\left (\frac {1}{2} i - \frac {1}{2}\right ) \, \sqrt {2} \sqrt {\tan \left (d x + c\right )}\right )}{d} - \frac {2 \, {\left (3 i \, A a \tan \left (d x + c\right ) + 3 \, B a \tan \left (d x + c\right ) + A a\right )}}{3 \, d \tan \left (d x + c\right )^{\frac {3}{2}}} \]

[In]

integrate((a+I*a*tan(d*x+c))*(A+B*tan(d*x+c))/tan(d*x+c)^(5/2),x, algorithm="giac")

[Out]

-(I - 1)*sqrt(2)*(-I*A*a - B*a)*arctan(-(1/2*I - 1/2)*sqrt(2)*sqrt(tan(d*x + c)))/d - 2/3*(3*I*A*a*tan(d*x + c
) + 3*B*a*tan(d*x + c) + A*a)/(d*tan(d*x + c)^(3/2))

Mupad [B] (verification not implemented)

Time = 9.54 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.27 \[ \int \frac {(a+i a \tan (c+d x)) (A+B \tan (c+d x))}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2\,{\left (-1\right )}^{1/4}\,B\,a\,\mathrm {atanh}\left ({\left (-1\right )}^{1/4}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\right )}{d}-\frac {2\,B\,a}{d\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}}-\frac {\frac {2\,A\,a}{3\,d}+\frac {A\,a\,\mathrm {tan}\left (c+d\,x\right )\,2{}\mathrm {i}}{d}}{{\mathrm {tan}\left (c+d\,x\right )}^{3/2}}+\frac {\sqrt {2}\,A\,a\,\mathrm {atan}\left (\sqrt {2}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (-1-\mathrm {i}\right )}{d} \]

[In]

int(((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i))/tan(c + d*x)^(5/2),x)

[Out]

(2*(-1)^(1/4)*B*a*atanh((-1)^(1/4)*tan(c + d*x)^(1/2)))/d - (2*B*a)/(d*tan(c + d*x)^(1/2)) - (2^(1/2)*A*a*atan
(2^(1/2)*tan(c + d*x)^(1/2)*(1/2 - 1i/2))*(1 + 1i))/d - ((2*A*a)/(3*d) + (A*a*tan(c + d*x)*2i)/d)/tan(c + d*x)
^(3/2)